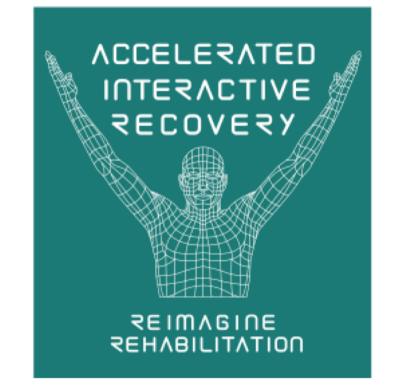
BASIC & Virtual Reality


Technology

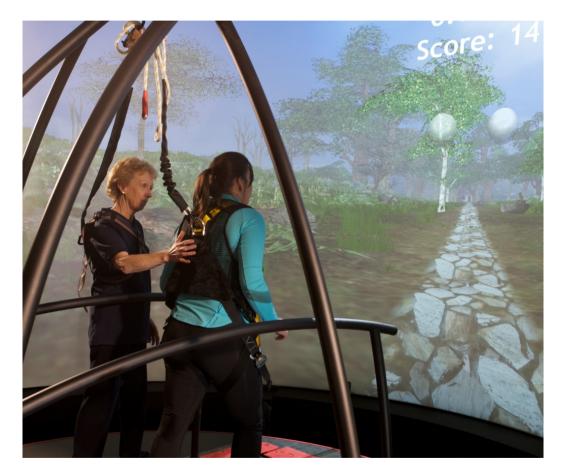
Sylvia Moss Neuro physiotherapist

AIR Project

CAREN (Computer Assisted Rehabilitation ENvironment)
DynSTABLE (Dynamic STAbility and Balance Learning Environment)
C-Mill(Retrainer for Gait)

CAREN System

Multi-movement platform base Dual-belt treadmill Force plate 10 motion capture cameras 3 high resolution video cameras 180 degrees screen 4 image projectors


Operated from computer desk Full body harness for users

CAREN System

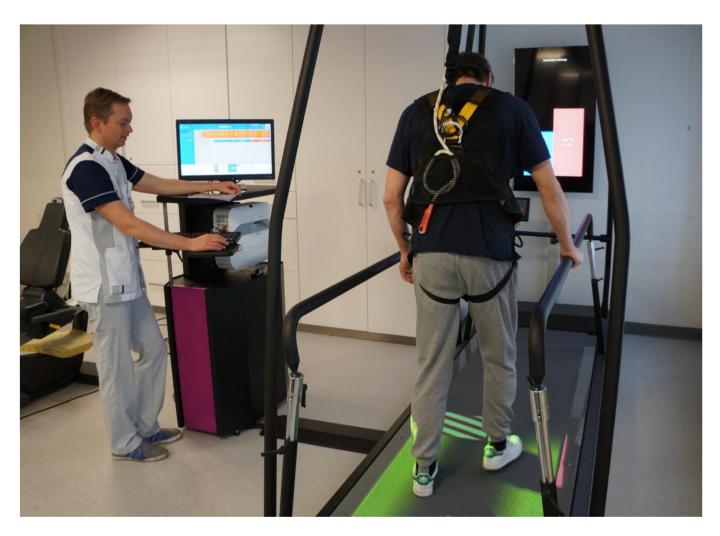
Multi-sensory virtual reality system System mimics the virtual environment Variety of applications that combine both physical and cognitive elements Real-time instant feedback for therapists New environments can be developed

Comprehensive full body gait analysis can be completed

DynSTABLE

Moveable platform base Force plate 4 motion capture cameras Virtual screen 3 image projectors

Operated from touchscreen computer panel Full body harness for users


<u>C-Mill</u>

A dynamic learning environment to improve walking patterns using an interactive treadmill.

Uses Augmented reality and Virtual reality

Operated from touchscreen computer panel

Full body harness for users

Case Study 1. JH

- 31 year old, married has 8 month old daughter. Wife owns Equestrian centre, parents live close by
- Previous veteran Iraq 2007-2011
- Maritime security on discharge from forces 2012-2017
- Last 4 months prior to injury working at home, building horse boxes

JΗ

24/8/17 Collapsed whilst working at home

Blue light to PRI, diagnosed AVM, induced coma

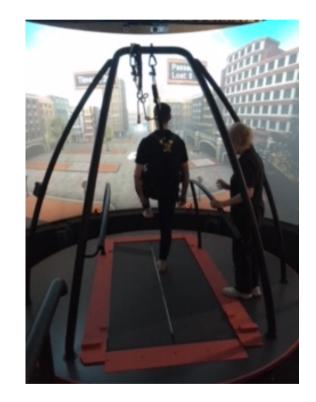
Craniotomy-glued AVM

Following surgery significant weakness of left side, peripheral visual field loss on left. Hypersensitivity on left

Unable to mobilise/ sitting/standing balance compromised

Initial Assessment at BASIC

14th October 2017 discharged from hospital, attended 1st appointment at BASIC on 19/10/17


- Independent with mobility, stepping over obstacles reduced, and looking up when walking
- 6 metre walk -4.78secs
- HADS: Anxiety 11 Depression 9: Attention/distraction moderate problem, talking incessantly
- NEADL: 41/88
- Goals: reduce hypersensitivity of left arm
- To return to his work/ to be able to run

Intervention

- Hands-on therapy prior to sessions on CAREN/C-Mill
- 18 sessions, attended twice a week
- Applications for balance eg Kite flyer, Maze, City Ride, Boat, Traffic Jam
- Gait training eg Magician Apprentice, Microbes, Rope Bridge
- HEP including squats, jumps
- Advice:- awareness of sensation, cramps, self pacing
- Support for family –Forces Covenant

Balance --CAREN

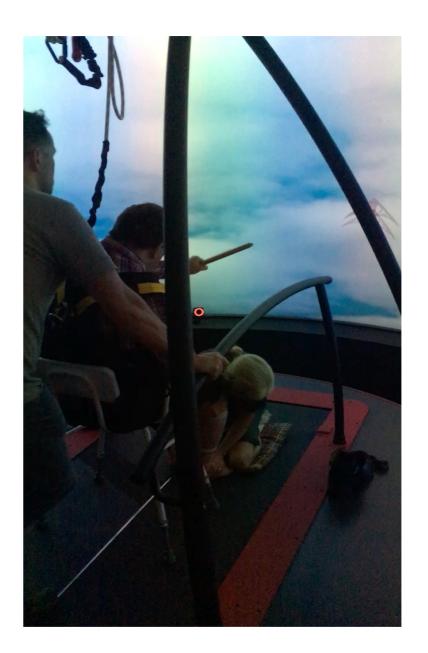
Comparison 19/10/17-----21/12/17

- Gait-unable to step over obstacles safely
- 6 metre walk: 4.78secs
- NEADL: 41/88
- Limited participation –less than 25% with leisure/social
- Unable to help with work at the Equestrian centre
- Hypersensitivity of left arm
- Left peripheral visual field loss Fatigue ++

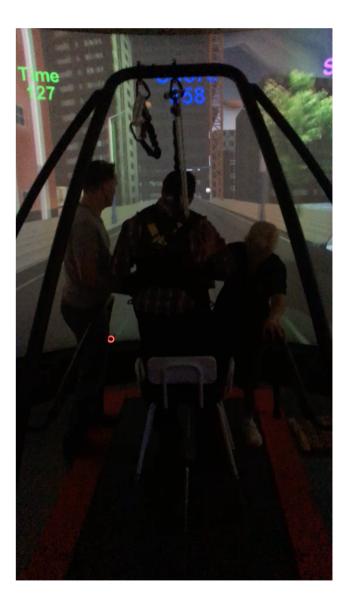
- Gait-steps safely over obstacles
- 6 metre walk: 3.72secs
- 6 metre run: 2.15secs
- NEADL: 69/88
- Greater participation in social/leisure
- Now helps out
- Still has sensory issues but deals with them better
- Slight improvement with vision
- Improved in fatigue, better management

Client quotes

- Felt without the support of BASIC and use of CAREN would not be were he is today –the NHS no longer inputting in his rehabilitation
- Achieved his main goal of running again
- August 2018 applying to compete in the Para-Olympic Gamesdressage


Cast study 2. R C

- Age 41 years old
- November 1999 RTA affecting right side, speech/behaviour: fully dependent for all cares
- Spent 5 years in specialist unit for ABI –seen daily
- 2005-2006 residential care-behavioural unit
- Last 5 years lives at home with parents with adaptations-initial hoist for transfers.
- Private physiotherapist / PA daily


Initial assessment-13/6/2018

- Wheelchair dependent-independent sitting compromised
- Poor postural control-Sit-std assist. Of 2
- Left side-UL/LL Grade 4
- Right UL prox Grade 2-0 distal contractures elbow
- Right LL Grade 2+ prox-Grade 1 distal
- NEADL 28/88
- Commence CAREN 2/7/2018

CAREN

CAREN

RC

References

Cameirão et al, (2012). The combined impact of virtual reality and neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 43(10), 2720-2728.

Glanz, Rizzo & Graap, (2003). Virtual reality for psychotherapy: Current reality and future possibilities. Psychotherapy Theory Research Practice Training. 40(1), 55-67.

Laver et al., (2012). Virtual reality for stroke rehabilitation. Cochrane Database. 7(9).

Pietrzak, Pullman & McGuire, (2014). Using virtual reality and video-games for traumatic brain injury rehabilitation: A structured literature review. Games for Health Journal. 3(4), 202-214.

Powell and Simmonds, (2014). Virtual reality and musculoskeletal pain: Manipulating sensory cues to improve motor performance during walking. Cyberpsychology and Behaviour. 17(6), 390-396.

Rabago and Wilken, (2011). Application of a mild traumatic brain injury rehabilitation program in a virtual environment: A case study. Journal of Neurological Physical Therapy. 35(4), 185-193.

Rizzo et al., (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological rehabilitation. 14(1), 207-239.

Roosink et al., (2015). Real-time modulation of visual feedback on human full-body movements in a virtual mirror: Development and proof-of-concept. Journal of Neuroengineering and Rehabilitation. 12(2), 12-22.

Roosink et al., (2016). Interactive virtual feedback improves gait motor imagery after spinal cord injury: An exploratory study. Restorative Neurology and Neuroscience. 34(2), 227-235.

Rose, Brooks & Rizzo (2005). Virtual reality in brain damage rehabilitation: Review. Cyberpsychology and Behaviour. 8(3), 263-271.

Sessoms et al., (2015). Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer assisted rehabilitation environment. Military Medicine. 180(3), 143-149.

Turolla et al., (2013). Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. Journal of Neuroengineering and Rehabilitation. 10, 85.

Van der Meer, (2014). Recent developments in computer assisted rehabilitation environments. Military Medical Research. 1(22), 1-7.

Weiss and Jessel, (1998). Virtual reality applications to work. 11(3), 277-293.

air@basiccharity.org.uk

0161 707 6441

07802 600 220